Gastric and gastroesophageal junction carcinomas and its morphological features, tertiary care centre study

Linta Thampi¹, PS Jayalakshmy², Merin Jose³

¹,³Senior Resident, ²Additional Professor, Dept. of Pathology, Government Medical College, Thrissur, Kerala, India

Abstract
Introduction: Cancer is a global health burden affecting every region and socioeconomic levels. Gastric cancer is the fifth most common cancer in the world. Despite an overall declining incidence, gastric adenocarcinoma remains the second most common cause of death worldwide due to malignant disease.

Materials and Methods: A cross sectional study was done in the Department of Pathology, in a Tertiary care centre in central part of Kerala during a period of 18 months (January 2014 - July 2015). Gross examination and morphological assessment of 60 gastrectomy specimens received in the department were done. Study was approved by institutional ethical committee.

Results: 68.3 percentage of cases were located in the pyloric region. 65 percentage cases had extension into serosa. 46.7 percentage cases were intestinal type. 33.3 percentage diffuse type, 16.7 percentage mixed type and 3.3 percentage mucinous type were seen. 51.6 percentage cases were intestinal type. 33.3 percentage diffuse type, 16.7 percentage mixed type and 3.3 percentage mucinous type were seen. 51.6 percentage cases were intestinal type. 33.3 percentage diffuse type, 16.7 percentage mixed type and 3.3 percentage mucinous type were seen. 51.6 percentage cases were intestinal type.

Conclusion: Most of the gastric carcinomas were intestinal type. Cases showed a predominance of pathological stage 2 in this study.

Introduction
Gastric cancer is the fifth most common cancer in the world with the highest incidence in Asia, Latin America and Caribbean and the lowest incidence in Africa and Northern America.¹ Cancers of the antropyloric region are more common in the high-risk regions whereas in the low-risk regions, tumours of the cardia predominate.²,³ Men are affected more frequently than women, with a male to female ratio of 2:1. Low socioeconomic status, high intake of salt and dried or pickled foods, smoking and alcohol consumption are some of the environmental factors implicated in gastric cancer whereas vitamin C in fresh fruits and vegetables, carotenoids and green tea are protective.⁴

Clinicopathologically, gastric carcinoma can be classified into two broad categories. First one is the early gastric cancers or superficially invasive lesions which are limited to the mucosa or the mucosa and submucosa, regardless of nodal status. The second one is the advanced adenocarcinomas extending at least to the muscularis propria. The prognosis of early gastric carcinoma is excellent, with a 5 year survival rate as high as 90%.⁵

Another most commonly used categorisation of gastric adenocarcinoma is the histologic classification of Lauren which subdivides gastric adenocarcinoma into two main types: intestinal and diffuse.⁶ Histologically, gastric carcinoma demonstrates marked heterogeneity in architecture and pattern of growth. These are histologically classified by WHO.⁷

Tumor location and histologic type should prompt specific concerns. Diffuse carcinoma of the antropyloric region have a high frequency of serosal and lymphovascular invasion and lymph-node metastases. Staging was done according to pTNM staging for gastric carcinoma.⁸

Materials and Methods
It was a cross sectional study to histomorphologically study all the gastrectomy specimens received in Department of Pathology, which are histologically diagnosed as gastric and gastroesophageal junction carcinomas. 60 cases were collected and examined.

Inclusion Criteria
Resected specimens received in the Department of Pathology, during the study period, which were diagnosed histologically as gastric and gastroesophageal carcinoma.

Exclusion Criteria
Small biopsy specimens were excluded.

Methodology
Gross examination of gastric and gastroesophageal carcinomas was done and tumour site, tumour size, appearance of the cut surface, depth of tumour invasion, appearance of the adjacent mucosa and lymph nodes sampled were documented. Tissue sampling was done.

*Corresponding Author: Linta Thampi, Senior Resident, Dept. of Pathology Government Medical College, Thrissur, Kerala, India
Email: lintathampi@gmail.com
http://doi.org/10.18231/j.ijpo.2019.075
After hematoxylin and eosin staining, the tissue samples were studied and tumour typing was done. Pathological TNM stage of the tumour, number of lymph nodes with metastatic deposits, involvement of proximal and distal resected margins, presence of lymphovascular emboli were noted.

Pathologic TNM Staging of Gastric Carcinoma

T—Primary Tumor
- pT1 Tumor invades lamina propria, muscularis mucosae or submucosa
- pT1a—Tumor invades lamina propria or muscularis mucosae
- pT1b—Tumor invades submucosa
- pT2 Tumor invades muscularis propria
- pT3 Tumor invades subserosa
- pT4 Tumor perforates serosa or invades adjacent structures
 - pT4a—Tumor perforates serosa
 - pT4b—Tumor invades adjacent structures

N—Regional Lymph Nodes
- pN0 No regional lymph node metastasis
- pN1 Metastasis in 1-2 regional lymph nodes
- pN2 Metastasis in 3-6 regional lymph nodes
- pN3 Metastasis in 7 or more regional lymph nodes
 - pN3a—Metastasis in 7-15 regional lymph nodes
 - pN3b—Metastasis in 16 or more regional lymph nodes

M—Distant Metastasis
- M0 No distant metastasis
- M1 Distant metastasis present
 (Pathologic staging cannot usually comment on the presence or absence of distant metastasis, unless biopsies of distant organs have been submitted for histologic examination)

Data Analysis
Statistical analysis was done by Chi-Square tests and Fisher's Exact Test. Cross tabulations were done using Microsoft Excel and SPSS software.

Observations and Results
In this study, 60 cases of gastric carcinoma specimens were studied.

Table 1: Age wise distribution

<table>
<thead>
<tr>
<th>Age group</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 - 40yrs</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>41 - 60</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>61 - 80</td>
<td>27</td>
<td>45</td>
</tr>
<tr>
<td>Above 80yrs</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2: Clinical symptoms

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of weight and apetite</td>
<td>18</td>
<td>30</td>
</tr>
<tr>
<td>Vomiting</td>
<td>2</td>
<td>3.3</td>
</tr>
<tr>
<td>Abdominal discomfort</td>
<td>8</td>
<td>13.3</td>
</tr>
<tr>
<td>Loss of weight and apetite & Vomiting</td>
<td>17</td>
<td>28.4</td>
</tr>
<tr>
<td>Vomiting & Abdominal discomfort</td>
<td>10</td>
<td>16.7</td>
</tr>
<tr>
<td>Loss of weight and apetite & abdominal discomfort</td>
<td>5</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Table 3: Distribution of tumour sites

<table>
<thead>
<tr>
<th>Tumour sites</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pylorus</td>
<td>41</td>
<td>68.3</td>
</tr>
<tr>
<td>Body</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>GE Junction</td>
<td>4</td>
<td>6.7</td>
</tr>
<tr>
<td>Entire Stomach</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Pylorus and body</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Cardia and GE junction</td>
<td>2</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4: Histopathological types

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestinal</td>
<td>28</td>
<td>46.7</td>
</tr>
<tr>
<td>Diffuse</td>
<td>20</td>
<td>33.3</td>
</tr>
<tr>
<td>Mixed</td>
<td>10</td>
<td>16.7</td>
</tr>
<tr>
<td>Mucinous Adenocarcinoma</td>
<td>2</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 5: Lymphnodes with metastasis

<table>
<thead>
<tr>
<th>Number of lymphnodes with metastasis</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (pN0)</td>
<td>17</td>
<td>28.3</td>
</tr>
<tr>
<td>1 - 2 (pN1)</td>
<td>16</td>
<td>26.7</td>
</tr>
<tr>
<td>3 - 6 (pN2)</td>
<td>21</td>
<td>35</td>
</tr>
<tr>
<td>7 - 15 (N3a)</td>
<td>5</td>
<td>8.3</td>
</tr>
<tr>
<td>16 & above (pN3b)</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 3: Intestinal type of gastric adenocarcinoma

Fig. 4: Diffuse type of gastric adenocarcinoma with Poorly cohesive neoplastic cells admixed with few signet ring cells

Fig. 5: Tumour cell nests floating in extracellular mucin in mucinous adenocarcinoma stomach

Fig. 6
Microscopically, serosal perforation and invasion into the perigastric fat was seen in 76.7% cases
Lymphovascular emboli was seen in 31.7% of the cases

Discussion
The cancer burden in India is growing at an alarming rate. It accounts for about 7% deaths in India.9 As per reports from the National Cancer Registry Programme, stomach is a frequent site of cancer in males in Chennai followed by Bangalore, Mumbai, Delhi, Bhopal.9,10 In this study also male predominance present. . Majority were of the age group 41-80yrs (90% each) with a mean age of 60.

The most frequent symptom was loss of weight and apetite (30%). 28.4% of the patients had loss of weight and apetite together with vomiting. But, this did not have any relevance in the study.

45%(27 cases) of tumours had a greatest dimension ranging from 3.1 – 6 cm followed by 25%(15 cases) ranging from 0-3cm. Majority of the tumours were located in the pylorus (68%). This was concordant with studies by Ho Sung Son, et al and Indu et al in which most of the tumours were located in the pyloric antrum (54.7 and 76.7% respectively).11

As per few literature, over the last few decades, there is an increasing rate of proximal stomach tumours than that of the distal region. In the present study, 68% cases were in pylorus indicating distal region. Similarly, a progressive increase in the diffuse type has also been mentioned.12,13

The intestinal type shows well-defined glandular structures with papillae, tubules, or even solid areas. The diffuse type,
by contrast, consists mainly of scattered poorly cohesive individual cells or clusters of cells. Tumours that contain approximately equal quantities of intestinal and diffuse components are called mixed carcinomas. Carcinomas too undifferentiated to fit neatly into either category are placed in the indeterminate category. In our study, most of the tumours were of intestinal type (46.7%) followed by the diffuse type (33.3%).16.7% were of mixed type and 3.3% were mucinous adenocarcinoma. Similar results were obtained in other studies also with a predominance of the intestinal type of gastric cancer.14,15,16 Malikka Tewari et al in her study conducted in a tertiary care hospital in North India found that about 71.4% were of diffuse type.16

According to WHO classification system, Gastric adenocarcinomas are categorised as:
1. Adenocarcinoma
 a) Intestinal type
 b) Diffuse type
2. Papillary adenocarcinoma
3. Tubular adenocarcinoma
4. Mucinous adenocarcinoma
5. Signet-ring cell carcinoma
6. Adenosquamous carcinoma
7. Squamous cell carcinoma
8. Small cell carcinoma
9. Undifferentiated carcinoma

Tubular adenocarcinoma contain prominent dilated or slit-like and branching tubules of varying sizes and shapes. Papillary subtypes are less common than tubular adenocarcinomas. These are well-differentiated exophytic carcinomas with elongated finger-like processes with a central fibrovascular connective tissue cores lined by cylindrical or cuboidal cells.

Mucinous adenocarcinomas are defined by more than 50% of the tumour volume composed of extracellular mucinous pools. Malignant epithelial components can be glands lined by a columnar mucus-secreting epithelium with interstitial mucin or chains or irregular cell clusters floating freely in mucinous lakes. Scattered signet-ring cells may be present but do not dominate the histological picture.

If more than 50% of the tumour consists of isolated or small groups of malignant cells containing intracytoplasmic mucin with nuclei pushed against the cell membranes, the tumour is classified as signet-ring cell carcinomas. In this study 85% cases had extension of neoplasm into subserosa and 76.7% had serosal perforation with perigastric fat infiltration. According to Song KY et al subserosal extension indicates infiltrative type growth pattern with carcinomatosis. These cases usually have poor prognosis.17 Tumors with subserosal invasion have a 5-year survival rate of 50% only.18

In this study, lymphovascular emboli was seen in 31.7% of the cases. A study by Dicken et al showed lymphovascular emboli in 59.6% cases. According to their study prognosis of patients with lymphovascular emboli are very poor. They concluded that lymphovascular emboli can be considered as independent prognostic factor.19

Conclusion

In this study, incidence of gastric carcinoma was more in male with male to female ratio of 4:1. Most of the cases fall into 41 to 80 yrs age group. Major presenting complaints were nonspecific symptoms like loss of weight and lose of appetite. Most cases had tumour size ranging from 3.1 – 6cm.68.3% tumours located in the pylorus region of stomach. In this study, common histological type was Intestinal type of gastric carcinoma. 28% cases were in stage 2A.

Conflict of Interest: None.

Funding: None.

References

7. WHO, digestive system.

How to cite this article: Thampi L, Jayalakshmy PS, Jose M. Gastric and gastroesophageal junction carcinomas and its morphological features, tertiary care centre study. *Indian J Pathol Oncol* 2019;6(3):388-92.