Study of Incidence and Cytomorphological Patterns of Tubercular Lymphadenitis in a Secondary Care Level Hospital of Jammu Region

Rajat Gupta1, Deepika Dewan2*, Jyotana Suri3

1Pathologist, Government Hospital Gandhinagar, J&K Health Services Jammu, (J&K)
2Senior Resident, Post Graduate Department of Community Medicine, Government Medical College, Jammu. (J&K)
3Associate Professor, Post Graduate Department of Pathology, Government Medical College, Jammu.(J&K)

*Corresponding Author:
Email: deepika.nity@gmail.com

ABSTRACT
Background: Tuberculosis is still a global health concern. Most common presentation of extra pulmonary tuberculosis is tubercular lymphadenitis. In our setting, keeping huge burden of tuberculosis in mind, clinicians have to rely on pathological diagnosis of enlarged lymph nodes i.e. cytomorphology with acid fast staining in diagnosing these cases so that diagnosis and management of such cases can be initiated quickly. Fine needle aspiration cytology (FNAC) of lymph nodes has been a simple, rapid and cost effective procedure for diagnosis of various causes of lymphadenopaties. Our study is the first one in its type in J&K reporting the incidence and pattern of Tubercular Lymphadenitis in secondary level health care hospital.

Aims: To report the incidence and describe various cytomorphological patterns of tubercular lymphadenitis in secondary care level Government Hospital, Gandhi Nagar, Jammu.

Material and Methods: In a study period of two and a half years, two hundred and thirty one consecutive enlarged lymph nodes were aspirated and subjected to cytomorphological evaluation with Papanicolaou(PAP), Giemsa, and Ziehl-Neelsen (Z-N) stained smears.

Results: Incidence of tubercular lymphadenitis was reported as 34.6% (C.I 0.285-0.411). Around 80% of cases were in the second to fourth decades of life with mean age as 27.08 years and male to female ratio of 1:1.6. Cervical region was the most common site of involvement with multiple unilateral lymphadenopathy as the most common presentation. The most common cytoligical picture was epithelioid granulomas with caseous necrosis (52.5%). Overall AFB positivity was seen in 65% cases.

Conclusions: FNAC has proved as a very useful first line of investigation in patients presenting with lymphadenopathy, especially in secondary care centres.

Key words: Cytomorphological patterns, FNAC, Incidence, Secondary level Hospital, Tubercular lymphadenitis, Z-N staining.

INTRODUCTION
Tuberculosis (TB) remains a worldwide public health problem. India is the highest TB burden country in the world in terms of absolute number of incident cases that occur each year. It accounts for one fourth of the estimated global incident TB cases in the world. [1] Considerable people die or loose productive years of their life despite the fact that TB has been accorded a top priority in Millennium Development Goals (Goal no.6) [2].Extra-pulmonary TB comprises 10% - 15% of the total TB cases with Tubercular Lymphadenitis as the most common form. In developing countries, almost two third of the cases of lymphadenopathy are due to tuberculosis. [3]

Demonstration of Acid Fast Bacilli (AFB) in smears from extra pulmonary sites is often difficult because of low bacillary load and thus poses considerable challenge in diagnosis. Fine Needle Aspiration Cytology (FNAC) has been one of the most preferred technique in developing country like India where patient load is always high as it is safe, cost effective and minimally invasive outpatient procedure[4] and provides a better alternative to excision biopsy [5]. Culture studies and Polymerase Chain Reaction (PCR) in terms of time and cost. [6]

The present study was conducted in Government Hospital Gandhi Nagar, a secondary level referral centre in Jammu next in hierarchy to Government Medical College, Jammu a tertiary level health care centre (apex institute) with the aim to estimate the incidence of tubercular lymphadenitis in our setting, describe the spectrum of various cytomorphological patterns of Tubercular lymphadenitis and report the AFB positivity with cytomorphological patterns.

MATERIAL AND METHODS
This prospective study was carried out at Government Hospital Gandhi Nagar, Jammu over a period of two and a half years from January 2013 to June 2015. Two hundred and thirty one consecutive enlarged lymph nodes were aspirated for cytological examination after patient referral from clinicians. However in each case detailed history and clinical examination was performed. Factors like patient’s age, gender, clinical symptoms, location of lymph nodes, gross examination of aspirate and cytomorphological patterns were studied. Aspiration was done on OPD basis using 22 gauge needle and 10 ml plastic syringe with a detachable syringe holder (Franzen Handle). In each case, three alcohol fixed
smears were prepared, first smear was stained with PAP stain, second with Giemsa stain, third one was stained with Ziehl–Neelsen (ZN) stain and an additional slide was kept unstained for any further required stain. The smears revealing features of tubercular lymphadenitis were categorised as per different cytological patterns, epithelioid granulomas with caseous necrosis, epithelioid granulomas without necrosis, necrosis only without epithelioid granulomas and polymorphs with necrosis with or without epithelioid granulomas.

DISCUSSION

The present study aimed to find out the incidence and description of cytological pattern of tubercular lymphadenitis among patients presenting with lymphadenopathy in secondary care centre; Government Hospital Gandhi Nagar, Jammu. Out of two hundred and thirty one consecutive lymph nodes aspirated from patients referred to pathology section, smears of eighty lymph nodes showed cytological features suggestive of Tubercular Lymphadenitis. The incidence thus reported was 34.6% (C.I 0.28-0.41). Comparable rates were reported by Chawla et al [8], Ahmed et al [9], Tilak et al [10]. However, comparatively higher incidence was reported by Paliwal [11] (55%), Chand P et al [12] (56.99%) and Rana S et al [13] could be due to the fact that these studies were conducted in tertiary care centres catering to large population and incidence rates also vary according to geographic region [14]. In our study maximum numbers of patients were present in the age group 21-30 years and majority were in second to fourth decades of life. Mean age was 27.08 years. Similar pattern of age distribution was reported by Paliwal et al, [11] Ergete et al [5], Purohit et al [15], Chand P [12] and Gupta AK [16]. However Mahopatra [17] had reported maximum patients in second decade followed by third decade. Youngest patient in our study was 5 months old and oldest was 67 years old. In study by Ahmed et al [9] the youngest patient was 2 years old and oldest was 95 years old whereas Paliwal et al [11] reported youngest patient of 4 years old with 63 years old as oldest. Lesser number of cases were observed in extreme age groups. Female patients suffered more from tubercular lymphadenitis as compared to males. Fatima et al, [18] along with other authors [5] [15] [12] also reported female preponderance. However Ahmed et al, [9] Rajeshkar et al [19] reported higher incidence in males. Higher incidence in females may be due to poor nutritional status and overall lower standards of living in developing countries.

In our study, cervical lymph nodes were most commonly involved (70%). In studies by Sharma et al [21] and authors [5] [11] [12] majority of lymph nodes involved were also cervical. Multiple unilateral lymphadenopathy was most common presentation (49%) which corroborated with Aggarwal et al [22]. However, Chand P [12] reported single palpable lymph node as the most common presentation. Sharma et al [21] observed similar pattern of findings among study conducted among paediatric age groups.

Most common cytological pattern found in our study was epithelioid granulomas with caseous necrosis (52.5%). However Paliwal et al [11] reported necrosis only without epithelioid granulomas as the most common cytological pattern in 39.2% patients. Gupta et al [16] reported epithelioid clusters with or without langhans giant cells with necrosis as most common pattern. Chand P [21] had reported caseous necrotic material with epithelioid giant cell granulomas and giant cells as the most common pattern. Overall AFB Positivity was 65% and maximum positivity was present in polymorphs with necrosis with or without epithelioid granulomas (75%). Comparable rates of AFB positivity was reported by Ergete et al [5] . However Paliwal et al [11] reported AFB positivity in 71% among 234 cases. Aggarwal [22] reported AFB positivity in 19.6% among 138 cases. However studies by various authors [5] [11] [12] [16] had reported maximum AFB positivity in necrosis only without epithelioid granulomas.

ACKNOWLEDGEMENT: NIL

RESULTS

Out of two hundred and thirty one consecutive lymph nodes aspirated, eighty cases showed features of Tubercular lymphadenitis and hence incidence was reported as 34.6%(C.I 0.285-0.411). Around 80% of cases were in the second to fourth decades of life with male to female ratio of 1:1.6 with mean age 27.08 years (Table 1). The youngest patient was five month old and oldest was 67 years old. Around 70% of cases had cervical presentation followed by axillary (12.5%) and inguinal (2.5%) (Table 2). None of the case had generalised lymphadenopathy. Among cases with cervical presentation, majority (49%) had multiple unilateral lymphadenopathy followed by single palpable lymphnode (41%) and only 10% had multiple bilateral lymphadenopathy. Out of lymph nodes aspirated around 40% had purulent material, followed by blood mixed material in 35% and cheesy necrotic material was aspirated in 25%. Cytological pattern in more than half of cases (52.5%) was epithelioid granulomas with caseous necrosis (with or without giant cells) followed by necrosis only without epithelioid granulomas in 28.7% cases, 13.8% had epithelioid granulomas without necrosis, and polymorphs with necrotic picture with or without epithelioid granulomas was...
present only in 5% of cases (Table 3). Overall AFB positivity was seen in 65% cases and out of that maximum AFB positivity of smears was present in cases with polymorphs with necrosis (75%) and least (54.5%) in cases with epitheloid granulomas without necrosis.

Table 1: Distribution of Cases of Tubercular Lymphadenitis According to Age and Sex

<table>
<thead>
<tr>
<th>Age Groups (Years)</th>
<th>Males N (%)</th>
<th>Females N (%)</th>
<th>Total N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>03(42.9%)</td>
<td>04(57.1%)</td>
<td>07(8.7%)</td>
</tr>
<tr>
<td>11-20</td>
<td>09(60%)</td>
<td>06(40%)</td>
<td>15(18.7%)</td>
</tr>
<tr>
<td>21-30</td>
<td>08(22.2%)</td>
<td>28(77.8%)</td>
<td>36(45%)</td>
</tr>
<tr>
<td>31-40</td>
<td>05(41.7%)</td>
<td>07(58.3%)</td>
<td>12(15%)</td>
</tr>
<tr>
<td>41-50</td>
<td>03(75%)</td>
<td>01(25%)</td>
<td>04(5%)</td>
</tr>
<tr>
<td>51-60</td>
<td>01(33.3%)</td>
<td>02(66.7%)</td>
<td>03(3.8%)</td>
</tr>
<tr>
<td>61-70</td>
<td>02(66.7%)</td>
<td>01(33.3%)</td>
<td>03(3.8%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>31(38.8%)</td>
<td>49(61.2%)</td>
<td>80(100%)</td>
</tr>
</tbody>
</table>

Table 2: Distribution of Cases According to Involved Anatomical Sites

<table>
<thead>
<tr>
<th>Anatomical Site</th>
<th>No. of Cases</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERVICAL</td>
<td>56</td>
<td>70%</td>
</tr>
<tr>
<td>AXILLARY</td>
<td>10</td>
<td>12.5%</td>
</tr>
<tr>
<td>SUBMANDIBULAR</td>
<td>7</td>
<td>8.75%</td>
</tr>
<tr>
<td>SUBMENTAL</td>
<td>5</td>
<td>6.25%</td>
</tr>
<tr>
<td>INGUINAL</td>
<td>2</td>
<td>2.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>80</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 3: Distribution of Cases According To Various Cytomorphological Patterns and AFB Positivity

<table>
<thead>
<tr>
<th>Cytomorphological Pattern</th>
<th>AFB Positive N (%)</th>
<th>AFB Negative N (%)</th>
<th>Total N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelioid Granulomas With Caseous Necrosis</td>
<td>26 (61.9%)</td>
<td>16 (38.1%)</td>
<td>42 (52.5%)</td>
</tr>
<tr>
<td>Epithelioid Granulomas With Out Necrosis</td>
<td>06 (54.5%)</td>
<td>05 (45.5%)</td>
<td>11 (13.8%)</td>
</tr>
<tr>
<td>Necrosis Only Without Epithelioid Granulomas</td>
<td>17 (73.9%)</td>
<td>06 (26.1%)</td>
<td>23 (28.7%)</td>
</tr>
<tr>
<td>Polymorphs With Necrosis With Or Without Epithelioid Granulomas</td>
<td>3 (75%)</td>
<td>01 (25%)</td>
<td>4 (5%)</td>
</tr>
<tr>
<td>Total</td>
<td>52 (65%)</td>
<td>28 (35%)</td>
<td>80 (100%)</td>
</tr>
</tbody>
</table>
CONCLUSION

Used first by Dudgeon and Patrick in 1927 for diagnosis of tubercular lymphadenitis \[23\] FNAC has been proved very useful first line investigation in patient presenting with lymphadenopathy especially in secondary care centres where advanced facilities and expensive facilities like culture and Polymerase Chain reaction (PCR) are not available. In remote areas patients can be diagnosed and put to treatment immediately without much delay thus decreasing the infectivity of disease.

ABBREVIATIONS:
AFB: Acid Fast Bacilli
C.I: Confidence Interval
FNAC: Fine Needle Aspiration Cytology
OPD: Out Patient Department
PAP: Papanicolaou
PCR: Polymerase Chain Reaction
TB: Tuberculosis
ZN: Ziehl-Neelsen

REFERENCES